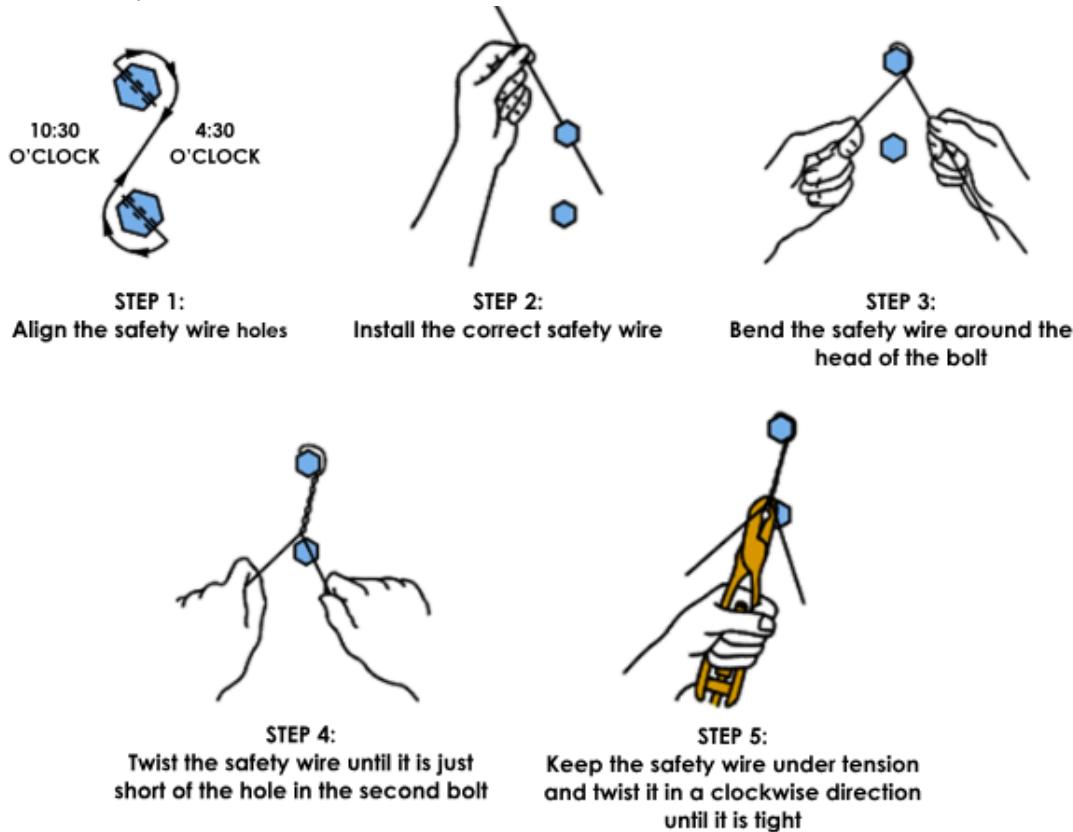
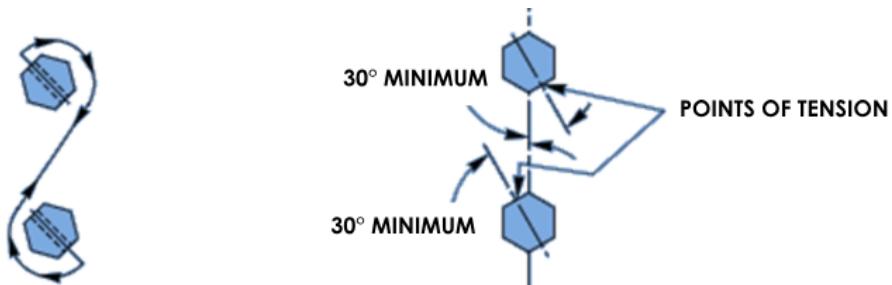


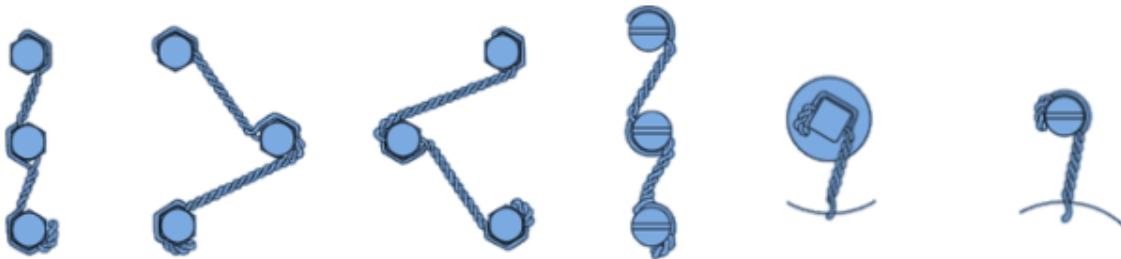
This document is created in order to clarify some grey areas of FS Rules 2026 v1.1 and to specify the policies Formula IHU is going to follow about them. Wherever applicable, this document supersedes FS Rules 2026 v1.1.


If any questions about rules arise or new specifications need to be added, this document will be revised.

In the event that any questions arise regarding this document, please do not hesitate to contact us for further clarification at technical.formulaihu@ihu.gr


T 10.2.2 Correctly Installed Safety Wiring

To determine a safety wiring as correctly installed, the process and the result must comply with the following:


Installation Steps:

Be mindful of the direction of the holes as well as the points of tension of the safety wire, as shown below:

Acceptable examples of safety wiring:

To declare a safety wiring as sufficient, regarding its flexibility, it must pass the following test:

- Push the safety wire at mid-span with light finger pressure
- The total flex must not be more than the limits shown in the following table:

A Safety Wire Length	B Full Flex Limit	C Half Flex Limit
12.7 mm	3.2 mm	1.6 mm
25.4 mm	6.4 mm	3.2 mm
50.8 mm	9.5 mm	4.8 mm
76.2 mm	12.7 mm	6.4 mm
101.6 mm	12.7 mm	6.4 mm
127.0 mm	15.9 mm	8.0 mm
152.4 mm	15.9 mm	8.0 mm

T7.2 Cooling Hose Connections

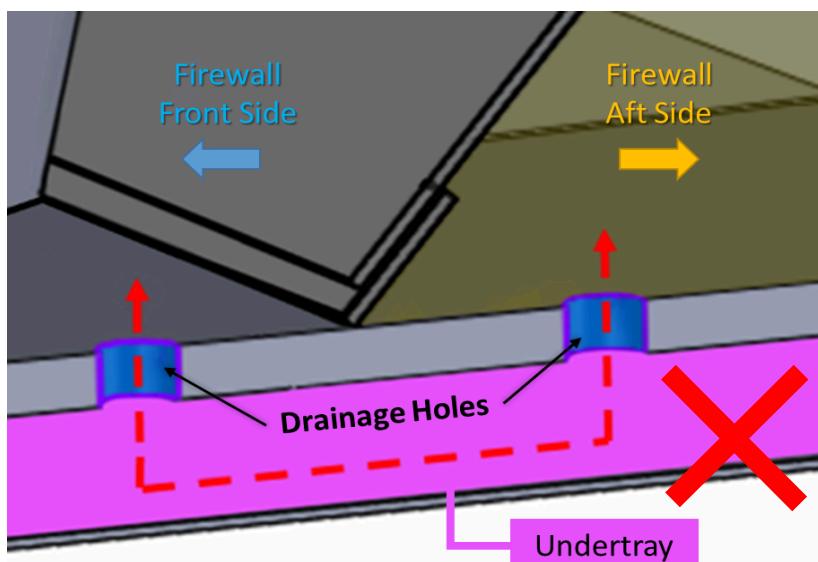
All hose-to-fitting joints in any cooling system must be secured using purpose-designed hose connection hardware (e.g., clamps/collars/couplings) intended for fluid sealing and mechanical retention under the system's operating temperature, pressure, and vibration.

The connection method must provide continuous circumferential compression (minor local discontinuities due to the clamp's tightening mechanism are permitted) of the hose on the fitting and be installed in a manner that does not cut, abrade, or otherwise damage the hose.

IN 1.2.7 Vehicle Presentation for Inspection

The vehicle must be presented for inspection in a clean, complete, and race-ready condition. All required systems and components for the relevant inspection must be fully installed, secured, and functional, with no active leaks, loose parts, temporary/unfinished assemblies, or exposed hazards that could affect the inspection outcome.

If the vehicle is not presented in this condition, the Scrutineer may decline to commence or may suspend the inspection until the vehicle is brought into compliance.


IN 1.2.9 Limited-Access Inspection Points (Photo/Video Support)

For inspection points that cannot be made directly visible without major disassembly, teams may provide clear photo/video evidence of the as-built configuration to support compliance. Such evidence may be accepted at the Scrutineer's discretion and does not replace the requirement to provide reasonable physical access (e.g. removable panels).

The Scrutineer may require additional access, partial disassembly, or other measures to verify compliance at any time.

T 4.8 Firewall

- During mechanical inspection your firewall is going to be inspected for possible openings with a flashlight. In addition to T4.8, for a firewall to be accepted, no light must be visible in the cockpit area when illuminated from the rear.
- An undertray assembly must not be able to connect the drainage holes in the adjacent sides of a firewall as shown in the example of the figure below.
- **CV ONLY:** Regarding T4.8.4, all materials employed to prevent the passage of fluids shall be resistant to fuel-induced corrosion and also be fire retardant as defined in T1.2.1.

Clarification about OEM Parts Documentation

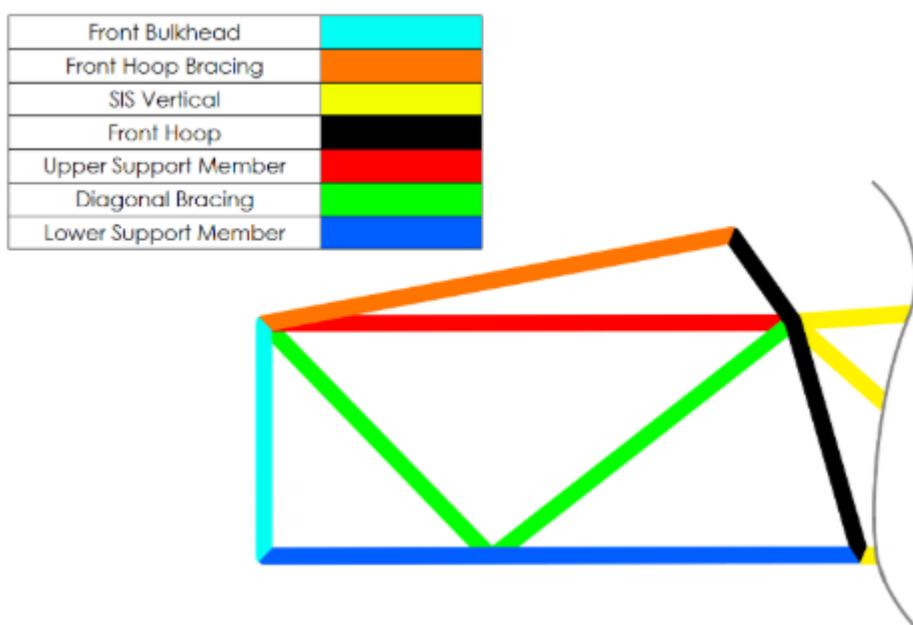
During Inspection, manufacturer's datasheets and/or manuals might be requested at Scrutineer's discretion and on that note teams must be able to provide them for each OEM part used on the vehicle.

OEM parts must be unmodified and their installation/assembly must be strictly according to the manufacturer's specifications.

CV ONLY - Fuel Tank Pressure Relief

The fuel tank must have a way to safely handle the pressure increase due to rising temperature in the fuel tank.

T 10.2.7 Clarification


If a team uses an OEM brake floater that is under T10.2.7, the application must be well-engineered from a known & reliable OEM supplier.

Scrutineers will assess the brake floater's datasheet/installation manual and have the right to not accept the design if they deem it unsafe.

FIHU gives the opportunity to the teams to validate their OEM applications as accepted or not, prior to the competition by sending a design report to technical.formulaihu@ihu.gr with the subject "Team name_ Brake Disc Floaters Report.pdf"

T 3.14 Front Bulkhead Support Structure for Tubular Chassis

Specification for the front bulkhead support structure of a tubular chassis.

T 7.2.4 Leakage Specification

According to T7.2.4, there must be no leakage on the cooling or lubrication system of the car in order to be able to pass pre-inspection of each dynamic discipline. Not to be confused with IN12.1.5, that is referring to post-inspection.

Balance bar positive locking

The brake system balance bar must have a locking mechanism that prevents non-intentional change in the brake balance (a jam nut is accepted). If an OEM balance bar is used, the installation must be according to the manufacturer's specifications, and should not be able to loosen by itself.